Resistance distance and the normalized Laplacian spectrum
نویسندگان
چکیده
منابع مشابه
Normalized laplacian spectrum of two new types of join graphs
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
متن کاملOn the spectrum of the normalized graph Laplacian
The spectrum of the normalized graph Laplacian yields a very comprehensive set of invariants of a graph. In order to understand the information contained in those invariants better, we systematically investigate the behavior of this spectrum under local and global operations like motif doubling, graph joining or splitting. The eigenvalue 1 plays a particular role, and we therefore emphasize tho...
متن کاملnormalized laplacian spectrum of two new types of join graphs
let $g$ be a graph without an isolated vertex, the normalized laplacian matrix $tilde{mathcal{l}}(g)$is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$, where $mathcal{d}$ is a diagonal matrix whose entries are degree of vertices of $g$. the eigenvalues of$tilde{mathcal{l}}(g)$ are called as the normalized laplacian ...
متن کاملEigenvalues of the normalized Laplacian
A graph can be associated with a matrix in several ways. For instance, by associating the vertices of the graph to the rows/columns and then using 1 to indicate an edge and 0 otherwise we get the adjacency matrix A. The combinatorial Laplacian matrix is defined by L = D − A where D is a diagonal matrix with diagonal entries the degrees and A is again the adjacency matrix. Both of these matrices...
متن کاملIdentities for minors of the Laplacian, resistance and distance matrices
It is shown that if L and D are the Laplacian matrix and the distance matrix of a tree respectively, then any minor of the Laplacian equals the sum of the cofactors of the complementary submatrix of D, upto a sign and a power of 2. An analogous, more general result is proved for the Laplacian and the resistance matrix of any graph. A similar identity is proved for graphs in which each block is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2007
ISSN: 0166-218X
DOI: 10.1016/j.dam.2006.09.008